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Some two-dimensional internal waves in a stratified fluid 
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Experiments are presented in which two-dimensional internal waves were gener- 
ated in a stably stratified fluid by the movement of a long horizontal circular 
cylinder. The cylinder was moved with a constant velocity a t  Reynolds numbers 
basedon the diameter of the cylinder of between 6 and 100. Under these conditions 
the internal wave system is stationary with respect to the moving cylinder and 
the phase configuration of the waves compares well with Lighthill’s theory for 
waves in dispersive systems. 

1. Introduction 
A body moving in a stable density stratified fluid may set up an internal wave 

system. Gortler (1943) and Mowbray & Rarity ( 1 9 6 7 4  have compared the wave 
system developed by an oscillating body in such a fluid with linearized theories. 
Gortler studied the steady-state wave systems by means of a shadowgraph 
technique and compared the results with a theory based on the characteristics 
of the linear equations, while Mowbray & Rarity used the Toepler-Schlieren 
system to look at the waves and used a theory based on group velocity argu- 
ments. Lighthill (1967) and Mowbray & Rarity (19676) have considered theories 
for the internal wave system behind a vertically moving sphere. In  all cases the 
agreement between the linear theory and the observations is very good. 

This paper presents some experimental results which show the phase configura- 
tion of two-dimensional internal waves generated by a body moving in a stably 
stratified fluid. The body was a long circular cylinder moving with a constant 
velocity normal to its horizontal longitudinal axis so that its path made an angle 
with the horizontal. Lighthill (1967) gave a general theory for the waves generated 
in dispersive systems by travelling disturbances and it will be shown how this 
theory predicts the phase configuration of the internal waves around the cylinder. 

2. Theoretical predictions 
The application of Lighthill’s theory to this problem is presented by Rarity 

(1967). The equation of motion for an inviscid two-dimensional flow takes the 
form 

where 
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and x and y are the horizontal and vertical co-ordinates relative to a body whose 
constant velocity relative to the undisturbed fluid is ( U ,  V ) .  @ is the stream func- 
tion defined bv 

is the square of the Viiisala-Brunt frequency which we shall consider constant. 
p, is the undisturbed density and g is the acceleration due to gravity. The Bous- 
sinesq approximation has been used, that is, the density changes have only been 
retained in the buoyancy term. Rarity does not use this approximation and a 
further term is present throughout his analysis. The extra term, which is of the 
form Wwo/2g where W [ = ( U2 + V2)3] is the velocity of the body, changes the 
lines of constant phase and alters the asymptote of the waves ahead of the body. 
However, the predicted change in angle of the asymptote is less than 
radians in these experiments and it is reasonable to neglect the extra term. 

We look for a plane wave solution of the form 

$ = $oexpi(klx+k,y-wt) ( 2 )  

(3) 

so that the dispersion relation obtained from (1) takes the form 

P(o+U.k ,  k l , k 2 )  = ( k : + k 2 , ) ( ~ +  Ukl+ V k J 2 - ~ : k ;  = 0. 

Lighthill (1967) discusses the effects of forcing terms moving with a constant 
velocity. The forcing term is assumed to vanish outside alimited region around the 
origin and it is expressed as a Fourier integral in wave-number space. Using 
the above equations with a forcing term present allows a formal solution for $ 
to be written as an integral over all wave-numbers. The waves that exist in a 
certain direction from the forcing region are those with wave-numbers corre- 
sponding to points on the wave-number surface which have normals, drawn 
towards higher w ,  which point in that particular direction. 

Curves of constant phase are represented by k.  r = A where A is a constant 
and r represents (x, y). Now r is parallel to the normal toPa t  kand is therefore a 
simple multiple of V P  where V is the gradient operator in k space. Thus the locus 
of points of constant phase is given by AVP/(L. V P )  which is evaluated from (3) 
and may be written in the parametric form 

where G = k, /k ,  and a is the angle which the path of the body makes with the 
horizontal. Curvesof constant phase are plotted in terms of woz/A Vandw, y/AV 
for various values of a in figures 1-4. The families of curves in these figures give 
an impression of the wave system but the distances between the curves do not 
represent any particular change of phase. 

3. The experiments 
The water tank used in the experiments was 160 em long, 90 em high and 55 ern 

from front to back. A stratified salt solution having a linear variation of density 
with depth was obtained by the method described by Mowbray (1966). A long 
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circular cylinder, 0-94 cm diameter, was suspended in the solution by two vertical 
supports from a trolley which ran with constant velocity on adjustable rails above 
the tank. In  all cases the longitudinal axis of the cylinder remained horizontal 
and the values of a used were go", 45", 30" and 10". The motion was observed 
through the glass sides of the tank with a schlieren system developed and de- 
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FIGURE 1. Curves of constant phase when the cylinder moves in a vertical direction. Experi- 
mental points are taken from photographs of the wave system around the 0.94 cm diameter 
cylinder moving with velocities of: 0,0-38 cm/s; x , 0.56 cm/s; v, 0.57 cm/s. 
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FIGURE 2. Curves of constant phase for a = 45". Experimental points are for the 0-94cm 
diameter cylinder moving with velocities of: 0 ,  0*308cm/s; x , 0*314cm/s; 0, 0.325cm/s. 
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scribed by Mowbray (1966). The diameter of the parallel beam of light trasrersing 
the tank was 46 cm. 

In these experiments the linear density distribution over the depth of the 
working section was sufficiently close to the exponential distribution implied 
by the constant Vaisala-Brunt frequency assumed in the theory. An inhomo- 

\ 
FIGURE 3. Curves of constant phase for M: = 20". Experimental points are for the 0.94 cm 
diameter cylinder moving with velocities of: 0, 0.255 cm/s; x , 0.346 cm/s; 0 ,  0.347 cinjs; 
A, 0.492 cm/s. 
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FIGURE 4. Curves of constant phase for a = 10". Experimental points are for the 0.94cm 
diameter cylinder moving with velocities of: x , 0.388 cm/s; 0, 0.442 cmjs; and e, for the 
0.24cm diameter cylinder moving with a velocity of 0.346cmjs. 
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geneity with respect to wo results in a slight bending of the wave crests, but the 
effect was negligible in the present experiments. The specific gravity of the sa.lt 
solution varied from 1.082 to 1.023 through the 46 cm working section. 

Some photographs of the internal wave systems are shown in figure 6, 
plate 1 and figure 7a ,  plate 2. The black vertical line on the photographs is 
the shadow ofthe modelsupports andweare looking along the axisof the cylinder. 
The angle and the direction of motion are shown by the wake from the model. 
In figures 1-4 the theoretical and experimental phase configurations are com- 
pared. When a is 90" and 45" the agreement is very good. A t  the smaller values 

FIGURE 5. The variation in the distance s with the cylinder velocity W. Experimental re- 
sults are from the 0.94cm diameter cylinder with: x , 0: = 90; 0, a = 45"; 0,  a = 20"; 
0, a = 10"; and from the 0.24cm diameter cylinder with A, a = 20". 

of a the agreement is very good outside the wave interaction regions, but inside 
this region the schlieren pictures are rather confusing. A smaller cylinder, 20 cm 
long and 0-24 cm diameter, was also used but the photographs were still difficult 
to analyse. Figure 7 b  shows the interaction region with several diamond shapes 
present and the lines of constant phase are approximately along the diagonals 
of these. 

When the model moves slowly the waves are close together and there are few 
waves visible. At higher velocities the wave length is greater and more waves 
are visible. The variation is such that the ratio of cylinder velocity to the wave 
spacing in a particular direction from the cylinder is constant. As an example, 
the co-ordinates at which lines of the same phase cross the path of the body are 
given by 

(x, y) = (a+ 37rn) (V /w , )  (cot a, l), 
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where rz is an integer and a is a constant. The distance, s, between the waves along 
the path of the body is thus 271 Wlw,. As w,, was constant in the experiments a 
plot of s sgainst W ,  for any cylinder and any angle a, should be a straight line 
of gradient 2n-/w,,. The experimental results are presented in figure 5. The straight 
line has a gradient of 5.83 compared with 27r/w0 = 5.6, calculated from the den- 
sity stratification. 

Figures 7 c and cl show the wave system shortly after an impulsive start from 
rest to a constant velocity and some of the transient waves are just visible. 

4. Conclusions 
The experiments have shown that the linearized theory predicts the phase 

configuration of the internal waves reasonably well and cine films confirm that 
the wave crests are stationary with respect to the moving cylinder. 

The author wishes to thank Dr B. S. H. Rarity for suggesting the experiment. 
Acknowledgement is also made to the Ministry of Technology who supported 
this work. 
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